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In this study the stability characteristics of shaped-charge jets when exposed to axial
electric currents are investigated. The objective of this study is to expand the results
of previous analyses by Littlefield49 to include high levels of electric current, where
thermal energy effects must be included. Coupling of the magnetohydrodynamic and
thermal characteristics of the flow is accomplished solely through the variation of
mechanical, thermal and electrical properties with temperature. Phase change effects
are also included. The jet is assumed incompressible and perfectly plastic, with the
Levy-von Mises criterion imposed to limit the effective stress. A linear variation of
the effective stress with temperature is employed to simulate effects of thermal
softening. Electrical resistivity and specific heat are permitted to vary linearly with
temperature, coupled with associated jump values that occur as the jet changes phase.
Solutions to the appropriate base flow are subjected to small axisymmetric disturbances,
and linear perturbation theory is employed to determine the time evolution of these
disturbances. Perturbations that grow the fastest in magnitude as time progresses are
identified as the most unstable. Results of the analysis indicate that thermal effects
can dramatically alter both the base and perturbed dow fields, as well as the growth
rate of perturbations.

I. INTRODUCTION

Shaped-charge jets are one of the most effective anti-armor weapons in application today. Because of
their superior penetrating ability, shaped charges are widely used as warheads by all branches of the
military. The penetration capability results from the high velocities achieved by the jet tip, and from the
long length facilitated by the axial velocity gradient. However, penetration performance of the shaped
charge does have its limitations because after a specified time (the breakup time), the jet will particulate
into many fragments roughly equal in size and begin to disperse. The penetrating ability of the jet is
severely degraded after this occurs.

The particulation and breakup phenomenon observed in shaped charges suggested that the stretching
motion of the jet may be unstable, and has prompted a number of experimental and theoretical
investigations. Recent two dimensional analyses by Curtis', Pack2 , Romero3 and Littlefield" have been
successful in reproducing some of the behavior observed in experiments, indicating that the fragments
formed after particulation should have lengths roughly on the order of the jet diameter. Perturbation
studies were also extrapolated in order to estimate jet breakup times. _

Recent theoretical studies have examined mechanisms by which the naturally-occurring instabilities in
shaped-charge jets might be enhanced in order to promote premature breakup. Once demonstrated, these
mechanisms would have the potential for incorporation into armor packages. One mechanism investigated
originally by Walker' involves the passage of an axial electric current through the jet. Although this .......
technique was originally intended as a means to vaporize the jet, it later became apparent that axial
cur. ents could be used to promote the formation of instabilities similar to those seen in ideal plasma
columns. This mechanism and others has been investigated by Toepfer'° and other researchers. Previous
analyses by Littlefield"' have demonstrated that axial electric currents can be used to increase the growth
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rate of instabilities, even when small currents are employed. The objective of this study is to expand the
results from the previous research to include high levels of electric current, where thermal energy transfer
mechanisms become important.

A number of assumptions have been made to make the analysis tractable yet retain as realistic conditions
as possible. The jet is assumed to be incompressible, infinitely long, uniformly elongating, and perfectly
plastic. An axial electric current initially on the surface of the jet is applied at time t = 0, and permitted
to diffuse with time. This electric current produces an azimuthal magnetic field, which interacts with the
current to produce Lorentz forces. The current also results in Joule heating, increasing the internal energy
of the jet. Small disturbances to the idealized uniform jet motion are considered, and linear perturbation
theory is employed to establish the equations governing the time evolution of these disturbances. The
stability of the jet is determined from solutions to these equations.

The arrangement of this paper may be described approximately as follows. In Sec. II, the mathematical
model and governing equations are presented. Solutions to these equations for the idealized motion of
the jet are given in Sec. III. in Sec. IV, linear perturbation theory is used to develop the governing
equations for small disturbances to the idealized jet motion. In Sec. V solutions to the perturbation
equations are presented and discussed. Finally, Sec. VI contains some general comments and conclusions.

II. MODEL AND GOVERNING EQUATIONS

Consider a uniformly extending, perfectly plastic shaped-charge jet as is shown in Fig. 1. The radius at
an arbitrary point along the jet boundary is denoted as rb(zt), and the outward unit normal vector at this
point as n. An axial electric current 1(t), assumed to be supplied by an external power source, is applied
at time t = 0. In this analysis the current is assumed constant, but it is a straightforward extension to
augment the model for the case of arbitrary currents that can vary with time.

Let the velocity be given by V, its r
components by vi, the pressure by
p, the deviatoric stress tensor by Vacuum
"ty, the current density by J, the
magnetic field by B, the enthalpy n z
by h, the temperature by T, the
density by p, the magnetic
permeability by 0.to, the resistivity
by X, the specific heat by c_ the
thermal conductivity by k, and the rb(z, t)
yield strength by Y. Then the
governing equations in the jet and Jet
in the surrounding vacuum are
given by Fig. 1. Model for Jet Stability Calculations.

pV- V =0, (1)

p ( +V- VV =-Vp+V .tr,+JxB, (2)

p( -- +V. Vh =L +V.,Vp +X(J J)2 +V. (kVT)+t;Jx (3)

E+VxB=?J, (4)

V. B =0, (5)

V x B = tJ (6)



and

V xE =- a (7)

Equations (1) - (3) are the incompressible continuity, momentum and energy equations, respectively; Eq.
(4) is Ohm's law, and Eqs. (5) - (7) are Maxwell's equations. Several other relationships are needed to
obtain closure. The temperature and enthalpy are related by

ah
D= C,, (8)

and the constitutive model assumed for the jet is a perfectly plastic model, with the effective stress
satisfying the von Mises criterion. The deviatoric stress depends only on the velocity and the yield
strength under these conditions, and may be expressed as

( av, avj ),at x)(9)

where g is a scalar that satisfies

2y 2

Tii = 3" (10)

Assuming the physical properties are known, Eqs. (1) - (8) when cast in cylindrical coordinates represent
a system of 10 scalar equations for 10 scalar unknowns: v, v,, p, E, Ez, J, J, Be, h, and T.

When large changes in thermal energy occur, several of the physical properties that appear in
Eqs. (1) - (10) can change their values by several orders of magnitude. The changes must be considered
in order to make accurate predictions of the jet motion. In the present study Y, k, c., X were all permitted
to vary with temperature according to the relationship

f P[1+P2T T<T.

1j33+P34T T:T8 ,'

where the Pi's are constants, T. is the melting temperature andf is th" specified physical property. In
the phase change regime, properties were linearly interpolated as a function of enthalpy from their values
at incipient to total melt. Variations of properties with respect to other state variables, such as pressure
or equivalent plastic strain, were not considered. Although the density certainly changes with temperature,
its variation is not as significant as with the other properties considered in this analysis. Furthermore,
the inclusion of variable density complicates the analysis considerably and will therefore be deferred to
future study.

Several of the physical properties listed in Eqs. (1) - (10) are discontinuous at the interface between the
jet boundary and the surrounding vacuum. The density, for instance, changes suddenly from its value in
the jet to zero in the surrounding vacuum. The procedure for treating this boundary that insures the
conservation equations are still satisfied is to integrate Eqs. (1) - (10) across a layer of thickness 8 in a
direction normal to the boundary, and then allow 5 to approach zero". This procedure yields the correct
boundary conditions, which are given by

arb
V, a-t+ V . Vrb, (12)

-nfp I]+ n. [ro] = 0, (13)

n. [kVT]-n [Vp] +n. [V. rij = 0, (14)



n. [B]=0, (15)

and

n x [E] = -n. v[B], (16)

where [] denotes the change in the specified quantity across the boundary, and v is the velocity of the
boundary. The outward unit normal vector n may be determined as

V(r - rb)1 = V(r - rb)l"()

Equations (1) - (10), together with the boundary conditions given in Eqs. (12) - (17), represent a system
of coupled differential equations to calculate the time evolution of the jet motion. In their most general
form, this set of equations is formidable and quite difficult to solve. However, simplified solutions which
examine the stability of the idealized motion of the jet may be performed with a reduced set of equations.
Solutions to this reduced set of equations allow easier identification of the physical principles that
contribute to the instability and breakup of shaped-charge jets.

III. IDEALIZED MOTION OF THE JET

In the idealized motion of a shaped-charge jet, the jet stretches uniformly with constant tip and tail
velocities V,,, and V,4,. The axial strain rate T1 is therefore Ti = (Vi,, - V,.i)/L, where L is the instantaneous
length of the jet. Since L increases as time progresses, "i decreases. When cast in a reference frame that
moves with the center of mass, so that v, = 0 and z = 0 at the mass center, these kinematic considerations
yield a velocity distribution given by

vZo =r1z; Vo =-TIr/2, (18)

where the subscript 0 denotes the idealized motion of the jet. Similarly, the length and axial strain rate
are given by

T1 = T7,/t; L=LoLT, (19)

where the subscript o denotes initial values and 'r = 1 + iot. The pressure, enthalpy and magnetic field
in the jet are determined by solving appropriate conservation equations. These variables may be cast in
dimensionless form by letting ffo = 47ea 2po/loI2, hio = ho/h,., To = (To - T")/(T3, - To), 60 = 27aBolpd, and

F = r 4 T-•/a, where a is the initial radius, I is the electric current, h. is the enthalpy at melting, and B is the
azimuthal component to B. Use of these dimensionless variables in the governing equations yields

r + + + (20)

ano - Po EA BaO A0 V 3+1 a 2( Rto1
- EA --- (21)

kt R ap F) P(7dP2 -r F}

and

a T T20  7)J 0, (22)

where fo = Yo/Y(To), Xo = AyX(To), and ko = ko/k(To). Plastic work has been neglected in this formulation
because it is .,mall for the problem at hand. The dimensionless constants appearing in these equations
are



3pTv'a 2  A=" P= (T 0 )(I

Y(T0) 47r2pf'la ' k(To0Y j

,1oa2 J0 T10a
2

E=-12 R=E R - }X(T0)

where c, is the slope of the specific heat-temperature curve for the solid. Physically, Ql represents a ratio
of inertial to plastic forces, A a ratio of electromagnetic to inertial forces, P a ratio of "plastic" to thermal
diffusion, E a ratio of kinetic energy to sensible heat, and R a ratio of magnetic convection to diffusion.
Furthermore, when the physical properties are cast in dimensionless form using Eq. (10), two additional
constants arise and are given by

hi h.,

where h,, is the latent heat of fusion and h, is the enthalpy at vaporization.

Boundary and initial conditions are required to solve Eqs. (20) - (22). The boundary conditions are
determined from the conditions in Eqs. (11)- (17), which yield

lo =-d; o- = 0; Bo=o47; (23)

and are evaluated at F = 1. Initially the jet was assumed to be isothermal with no electric current flowing,
SO ffo, /io, and 60 were all set to zero at 'r = 1.

Shown in Fig. 2 is the dimensionless 2.0

temperature, pressure and magnetic
field distribution as a function of
normalized radius in the jet at three 1.5 ----------- ....
different times. The parameter A was ----------- Z04chosen as 100, whereas the remaining or....... -- 46
parameters were assigned values -

typical for shaped-charge jets, and are 1.0
listed in Table 1. While at early times t-0.30

significant surface heating occurs, 11.0
central portions of the jet begin to rise o.- -.... - -- ./
in temperature at later times. This 0..

body heating is a result of the ..-. t-o.oz/"2
temperature variation in resistivity,
which causes the current density to 0..
rise in the center of the jet where the 0.0 0.2 o.4 o.6 0.8 1.0

resistance is lower. The net result is a
quasi-uniform temperature distribu-
tion so that the entire cross section of Fig. 2. Normalized Temperature, Pressure and Magnetic
the jet melts almost simultaneously. Field Distribution vs. Normalized Radius.

In the vacuum surrounding the jet, the governing equations Table 1. Numerical Values of
presented in the previous section are all identically satisfied Dimensionless Parameters
except for Eqs. (5) and (6). Furthermore, since J a0 in the
vacuum, these equations reduce to Q 0.879

R 2.13
V2a 0 = 0, (24) E 5.07 x 10-3

P 2880
which yields the solution fo = -TT'/f- S 1.50

Q 4.02



IV. FIRST-ORDER EQUATIONS

Small axisymmetric disturbances to the uniform jet motion were then considered using perturbation
analysis. Application of perturbation theory to the governing equations yields a set of linear partial
differential equations that describe the time evolution of disturbances to the jet motion. Disturbances
that continue to grow as time progresses are identified as unstable. The fastest growing instability is an
indication of the most prevalent disturbance in the actual jet motion.

The algebraic details of the derivation for the perturbation equations are complicated and quite
cumbersome, and for brevity will not be repeated here. The equations are formed by expanding the
dependent variables in a Taylor series for t, keeping only the terms are of order E'. Furthermore, previous
analysis has demonstrated that transformation of the governing equations into the lagrangian coordinates

f = r•f-x/a; Z = z/at (25)

permits the axial dependence of dependent variables to be Fourier analyzed. Let

v1 = rloaVexp(ikz');

VZ1 = 7l1ai7 exp(ikz-);

p, = p•ol2exp(ikz-)1/4a2;

h, = h[i exp(ikz-);
B, P1JA exp(ikz)/2ira; (26)

T, - T0  = (T. - To)Texp(ikz-);

Y = Y01'exp(ikz-);
2, = X0Xexp(ikz-);
k = k0Eexp(ikz-);

where k is the axial wavenumber, i = "FIT', and the 1 subscript denotes a first order quantity. Then the
differential equations governing the motion of small disturbances are given by

SVZ=0, (27)
-T + -t"d z

7, = /2 0j7 1 k ? i 7, 2-r-?a?(av, _ Vi
2--r -k i 7 +t -- '9 -7i

-At' B- +go-+2 _ (28)[1 af ar

a,7, + _A ik 'T 9 -1r a '7a ý + 2 . 1

+-I"t"F+'t -pLiki" + ,L T °B' (29)

andr ( 'A-0/2afio ~ 1a= f T1 P 7 +~ L kA F O
Tai ,aa/ ,i an0 TATr" RfYp

ff2aAO f0+1 (aA +q1 +- [ a( T Ia( alk 1
+2A~PJ arr K'-J-- o -&4i (30)

r,\ JJ F aF air F Tr ar, T3

and



k 2

R -F (31)

a52 ,a -r ) -5- af )+) afp 5fF JJ

In the vacuum surrounding the jet, solutions to the first order equations require A = 0 in the vacuum. This
result also follows directly from Ampere's law, since the total current enclosed by the jet does not change
when an axisymmetric disturbance is applied.

Several boundary and initial conditions are required to solve Eqs. (26) - (30). The initial conditions have
been presented elsewhere6 and are still valid in the present analysis if h, is assumed zero initially.
Calculations demonstrated that the initial value of h, has a negligible effect on the results anyway, so in
the present study the initial vzaxe of h, was set to zero. The boundary conditions result from Eqs. (11) -
(17), and are derived using a procedure similar to the one used to determine the governing perturbation
equations. These conditions are given by

af b 1/•l2 -O,(2

= 0, (32)

L4AT' af DAr+~P? ar 0,J (33)

3ik_. ,
-- r -ikg,-T'3-2-=O, 

(34)

A + -2+-rb =, (35)

and

afr afo a2ro •+ k-•-+'o~r =o,(35)

and are evaluated at F = 1. In these equations, the variable rb is the amplitude of the disturbance to the

radius of the jet, defined as

rbl = aftb exp(ikz)/Tl" 2 . (37)

The numerical value of Fb has special significance since it is a dimensionless measure of the magnitude
of perturbations to the jet boundary. Therefore, disturbances that maximize the value of rb are readily
identified as the most unstable perturbations.

V. SOLUTIONS TO PERTURBATION EQUATIONS AND STABILITY
CHARACTERISTICS OF THE JET

Numerical solutions to the perturbation equations presented in Sec. IV were calculated for a wide range
of electric currents and disturbance wavelengths. As a result of the lagrangian transformation applied to
the governing equations, the wavelength is time dependent and related to the wavenumberas X. = 21ar/k,
so initially short wavelengths become longer and stretch at the same rate as the jet length. Large electric
currents were applied in the model by increasing the value of the parameter A, in order to in-" estigate the
effects of large internal energy changes on the jet stability.



Shown in Fig. 3 is the normalized amplitude of the perturbed radius 4i as a funcuon of normalized time
r for several different wavelengths. The value of A was 1.0, and the values of the other dimensionless
parameters were as given in Table 1. For this value of A. thermal effects are uncoupled from the momentum
and magnetic fields since the maximum value of ho reaches only 0.03 when t = 1. Consequently, the
values of F, overlay almost exactly the values obtained from an isothermal model6 . where energy balance
effects were neglected. It is evident from the figure that disturbances corresponding to the wavenumber
k = t grow at the largest rate for most times. This wavenumber corresponds to an initial disturbance
wavelength on the order of the jet diameter. Furthermore, disturbances grow faster than the case where
no current is applied (A = 0). Extrapolation of this result to large amplitude disturbances would indicate
that when low levels of electric current are applied, jets should particulate into fragments with lengths
roughly equal to or slightly greater than the jet diameter.

The contribution of hydrodynamic and electromag-
netic effects to instabilities in jets under isothermal 0o
conditions has been discussed at length elsewhere4 9.
and for brevity will be only summarily discussed here. 7F.
The hydrodynamic instability results from an axialj /"
stress that opposes the stretching motion of the jet, ,,'" --

which is positive and constant for the idealized jet
motion. When combined with the reduction in
cross-sectional area in regions where necking occurs, b
this constant axial stress results in a net force that
always tends to accelerate material out of the neck,
thus resulting in an unconditional instability.
Moreover, in the absence of any stabilizing effects,
!his criterion would indicate that very short
wavelength disturbances should be the most unstable.
However, the short wavelength disturbances are 0.0 0.2 0.4 0.6 0.8 1.0

partially stabilized by stress enhancement that occurs
in the necking regions. The most unstable
hydrodynamic disturbances, therefore, have Fig. 3. Normalized amplitude rb VS.

moderate wavelengths. The electromagnetic normalized time for several values of k. The
contribution to the instability occursbecause the axial value of A was 1.0, and the values of the other
current density tends to increase in the necked dimensionless parameters are given in
regions, resulting in an increase in magnetic pressure. Table 1.
This pressure increase also tends to accelerate
material out of necking regions, and results in
unconditional instability.

When the electric current is increased, the behavior of instabilities in the jet change both in magnitude
and character. Shown in Fig. 4 is the normalized amplitude of the perturbed radius as a function of
normalized time for disturbances of several different wavenumbers. The value of A was 100, and the
values of the other dimensionless parameters were as given in Table 1. For this value of A. incipient
melt initiates at the surface at about t = 0.2, and complete melt begins to occur at t = 0.45. It is evident
from the figure that larger currents result in dramatic increases in the growth rate of instabilities.
Furthermore, the shortest wavelength disturbances appear to grow even faster when A is increased. When
"r = 0.8, for example, Fig. 4 indicates that disturbances corresponding to k = 2nt have the largest perturbed
radius. This wavenumber corresponds to a wavelength equal to roughly half the jet diameter. Moreover,
it is apparent from the slopes of F. that perturbations corresponding to k = 4at grow at an even faster rate.
This seems to indicate that the shortest wavelength perturbations will eventually become the most unstable
disturbances.

The changes observed in the growth rate of 4. when A is increased are a result of the additional importance
of electromagnetic instabilities. As the current increases, the temperature increases and the jet material
softens, until the yield strength is essentially zero at the melting point. Since hydrodynamic instabilities
in the jet are a direct result of material strength, hydrodynamic effects do not contribute significantly to
instability after incipient melting. The electromagnetic instabilities, on the other hand, become
increasingly dominant. Furthermore, it is evident that the shortest wavelength disturbances should grow
faster when electromagnetic instabilities are prevalent, since the axial magnetic pressure gradient that
activates the instability becomes larger as the wavelength diminishes. This phenomenon is similar in
nature to the electromagnetic instabilities seen in ideal plasma columns, where the shortest wavelength



disturbances possess the largest growth rates". Results in Figs. 3 and 4 are in qualitative agreement with
this trend, indicating that the wavelength of the most unstable perturbation decreases with increasing
current.

It is noteworthy to compare the results from the present analysis to the results when isothermal conditions
are assumed. Shown in Fig. 5 is F, as a function oft at several wavenumbers calculated using an isothermal
model 6. The value of A was 100, and the remaining parameters are given in Table 1. A comparison o"
Figs. 4 and 5 indicates that the isothermal model underpredicts the late time growth rate of all disturbances,
but particularly the short wavelength perturbations. This reduction in growth rate is a result of the absence
of thermal softening in the isothermal model. Without thermal softening, the jet is partially stabilized
by the axial stress enhancement that occurs in necked regions. Moreover, this stress enhancement effect
increases in magnitude as the wavelength diminishes, which explains why the short wavelength
disturbances are stabilized considerably when thermal softening is omitted. The magnitude of this
stabilizing effect appears to be considerable and is indeed a surprising result, considering that the plastic
forces were about two orders of magnitude smaller than the electromagnetic forces in this example.

1000000 1000000 . . . .,. ...

100000 100000

10000 10000

rb 1000 7 -- -

"tob tooo-"
100 • •1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

i i1

Fig. 4. Normalized amplitude F. vs. Fig. 5. Normalized amplitude , vs.
normalized time for several values of k. The normalized time under isothermal

value of A was 100, and the values of the other conditions for several values of k. The
dimensionless parameters are given in Table 1. value of A was 100, and the values of the

other dimensionless parameters are given
in Table 1.

VI. CONCLUSIONS

Large axial electric currents can have a powerful disrupting effect on shaped-charge jets. Results from
the perturbation calculations indicate that growth rates in the perturbed radius can be increased by a factor
of 10* - 10 over their normal values when A = 100. Using typical numerical values for strain rate, radius
and density in copper shaped-charge jets, A = 100 corresponds to an axial electric current of about 400
kA. Although this is a large electric ;urrent, it is definitely realizable and within the realm of existing
pulsed-power technology.
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